« List of all CVEs

CVE-2025-38670

arm64/entry: Mask DAIF in cpu_switch_to(), call_on_irq_stack()

Published: 8/22/2025 Last updated: 12/23/2025 Reserved: 4/16/2025

In the Linux kernel, the following vulnerability has been resolved: arm64/entry: Mask DAIF in cpu_switch_to(), call_on_irq_stack() `cpu_switch_to()` and `call_on_irq_stack()` manipulate SP to change to different stacks along with the Shadow Call Stack if it is enabled. Those two stack changes cannot be done atomically and both functions can be interrupted by SErrors or Debug Exceptions which, though unlikely, is very much broken : if interrupted, we can end up with mismatched stacks and Shadow Call Stack leading to clobbered stacks. In `cpu_switch_to()`, it can happen when SP_EL0 points to the new task, but x18 stills points to the old task's SCS. When the interrupt handler tries to save the task's SCS pointer, it will save the old task SCS pointer (x18) into the new task struct (pointed to by SP_EL0), clobbering it. In `call_on_irq_stack()`, it can happen when switching from the task stack to the IRQ stack and when switching back. In both cases, we can be interrupted when the SCS pointer points to the IRQ SCS, but SP points to the task stack. The nested interrupt handler pushes its return addresses on the IRQ SCS. It then detects that SP points to the task stack, calls `call_on_irq_stack()` and clobbers the task SCS pointer with the IRQ SCS pointer, which it will also use ! This leads to tasks returning to addresses on the wrong SCS, or even on the IRQ SCS, triggering kernel panics via CONFIG_VMAP_STACK or FPAC if enabled. This is possible on a default config, but unlikely. However, when enabling CONFIG_ARM64_PSEUDO_NMI, DAIF is unmasked and instead the GIC is responsible for filtering what interrupts the CPU should receive based on priority. Given the goal of emulating NMIs, pseudo-NMIs can be received by the CPU even in `cpu_switch_to()` and `call_on_irq_stack()`, possibly *very* frequently depending on the system configuration and workload, leading to unpredictable kernel panics. Completely mask DAIF in `cpu_switch_to()` and restore it when returning. Do the same in `call_on_irq_stack()`, but restore and mask around the branch. Mask DAIF even if CONFIG_SHADOW_CALL_STACK is not enabled for consistency of behaviour between all configurations. Introduce and use an assembly macro for saving and masking DAIF, as the existing one saves but only masks IF.

CNA assigner: Linux (416baaa9-dc9f-4396-8d5f-8c081fb06d67) Requested by: n/a

Opam packages affected (28)

albatross cdrom conf-bpftool conf-libbpf conf-linux-libc-dev core core_unix hvsock mirage-block-unix mm ocaml-probes orun rawlink rawlink-eio rawlink-lwt restricted shell solo5 solo5-bindings-hvt solo5-bindings-spt solo5-cross-aarch64 solo5-kernel-ukvm tracy-client tuntap uring vhd-format vhd-format-lwt xapi-stdext-unix

Products affected (3)

Product Vendor Version
Linux Linux n/a
Linux Linux 12.1.0
Linux Linux n/a

References (16)